Edmund Optics®

Knowledge Center

 Verified library of trusted technical resources created by our 240+ global engineers.

Filter
Search Results for: COTS Testing (44)

Testing and Targets

Discover the different types of testing targets and their ideal applications, advantages, limitations, equations, and examples at Edmund Optics.

View Now Add to saved content

Resolution and MTF Testing

View Now Add to saved content

Beam Expander Testing

Shack-Hartmann wavefront sensors are used to test the transmitted wavefront error of laser beam expanders, predicting the real-world performance of the beam expander.

View Now Add to saved content

Why Laser Damage Testing is Critical for UV Laser Applications

Laser Induced Damage Threshold describes the maximum quantity of laser radiation an optic can take before damaging. Learn more at Edmund Optics.

View Now Add to saved content

Laser Damage Threshold Testing

Testing laser induced damage threshold (LIDT) is not standardized, so understanding how your optics were tested is critical for predicting performance.

View Now Add to saved content

Different Types of LIDT Specifications

Not all optical components are tested for laser-induced damage threshold (LIDT) and testing methods differ, resulting in different types of LIDT specifications.

View Now Add to saved content

Handling and Storing High Power Laser Mirrors

Check out these best practices for handling and storing high power laser mirrors to decrease the risk of damage and increase lifetimes at Edmund Optics.

View Now Add to saved content

Diamond-Like Carbon Coatings

Diamond-like carbon (DLC) coatings are a type of highly durable, anti-reflective optical coating ideal for defense applications and other harsh environments.

View Now Add to saved content

Challenges of Specifying LIDT for CW Lasers

The LIDT of continuous wave (CW) lasers is dependent on laser power, beam diameter, and other use parameters.

View Now Add to saved content

Importance of Beam Diameter on Laser Damage Threshold

The diameter of a laser highly affects an optic’s laser induced damage (LIDT) as beam diameter directly impacts the probability of laser damage.

View Now Add to saved content

Uncertainty in LIDT Specifications

Laser induced damage threshold (LIDT) of optics is a statistical value influenced by defect density, the testing method, and fluctuations in the laser.

View Now Add to saved content

Cleaning Optics

Looking for the best way to clean optics? Learn more about the different cleaning products and methods, along with tips to handle optics at Edmund Optics.

View Now Add to saved content

Optical Flats

Want to know more about optical flats? Find information including an explanation, what optical flats show, applications, and more at Edmund Optics.

View Now Add to saved content

The Complexities of High-Power Optical Coatings

Want to know more about high-power optical coatings? Find out more about the importance, fabrication, and testing at Edmund Optics.

View Now Add to saved content

Choosing the Correct Test Target

Do you have a question about test targets? Find out how to choose the correct test target for your system along with application examples at Edmund Optics.

View Now Add to saved content

High Laser Damage AR Coatings

Laser optics high reflectivity mirrors meet exceptional specifications that Edmund Optics' competitors often fail to meet. Learn more at Edmund Optics.

View Now Add to saved content

Design vs. Manufacturing

“How will this lens perform?” It may sound like a simple question, but the answer can be complicated.

View Now Add to saved content

Integration of Optical Systems

Are you looking to use integration in your next system? Find out more about integrating in both imaging and non-imaging applications at Edmund Optics.

View Now Add to saved content

Understanding and Specifying LIDT of Laser Components

Laser induced damage threshold (LIDT) denotes the maximum laser fluence an optical component can withstand with an acceptable amount of risk.

View Now Add to saved content

Understanding Spatial Filters

Do you have a question about spatial filters? Learn more about how spatial filters are used with lasers and improve a beam at Edmund Optics.

View Now Add to saved content

Sensor Performance and Limitations

View Now Add to saved content

Ruggedization of Imaging Lenses

Have an application in a demanding environment? Learn about the different types of ruggedization: industrial, ingress protection, and stability at Edmund Optics.

View Now Add to saved content

All About Aspheric Lenses

Learn all about the benefits of aspheres, their unique anatomy, how they're manufactured, and how to choose the right one for your system.

View Now Add to saved content

Introduction to Modulation Transfer Function

Want to know more about the Modular Transfer Function? Learn about the components, understanding, importance, and characterization of MTF at Edmund Optics.

View Now Add to saved content

Can A Beam Expander be Used in Reverse?

Beam expanders can be used in reverse to decrease a laser beam's diameter, but divergence will be increased.

View Now Add to saved content

Homogeneity and Scatter from Inclusions and Bubbles

Inhomogeneity and scatter from inclusions and bubbles in optical components can lead to worse performance, especially in laser optics applications.

View Now Add to saved content

Introduction to Reflective Objectives

Reflective objectives use mirrors to focus light or form an image. Learn more about the different types and benefits of reflective objectives at Edmund Optics.

View Now Add to saved content

Metallic Mirror Coatings

Want to learn more about metallic mirror coatings? Find information about standard and custom metallic mirror coatings that are available at Edmund Optics.

View Now Add to saved content

Tips for Designing Manufacturable Lenses and Assemblies

Learn more about why manufacturing, assembly, testing and implementation are all equally important for a successful lens design.

View Now Add to saved content

LIDT for Ultrafast Lasers

The short pulse durations of ultrafast lasers make them interact with optical components differently, impacting the optic’s laser damage threshold.

View Now Add to saved content